
J.  Fluid Mech. (1994), vol. 268, pp. 133-145 
Copyright 0 1994 Cambridge University Press 

133 

Analogy between laminar flows in curved pipes and 
orthogonally rotating pipes 

By HIROSHI ISHIGAKI 
Kakuda Research Center, National Aerospace Laboratory, Kakuda, Miyagi, Japan 

(Received 19 October 1992 and in revised form 19 November 1993) 

The secondary flow of a viscous fluid, caused by the Coriolis force, through a straight 
pipe rotating about an axis perpendicular to the pipe axis is analogous to that of a fluid, 
caused by the centrifugal force, through a stationary curved pipe. The quantitative 
analogy between these two fully developed laminar flows will be demonstrated through 
similarity arguments, computational studies and the use of experimental data. 
Similarity considerations result in two analogous governing parameters for each flow, 
which include a new one for the rotating flow. When one of these analogous pairs of 
parameters of the two flows is large, it will be demonstrated that there are strong 
similarities between the two flows regarding friction factors, heat transfer rates, flow 
patterns and flow properties for the same values of the other pair of parameters. 

1. Introduction 
The study of viscous flow in stationary curved ducts is of fundamental interest in 

fluid mechanics. When a viscous fluid flows through a curved pipe, a cross-stream 
pressure gradient is balanced by a centrifugal force in the rapidly flowing central core 
of the flow, while the slower flowing fluid along the walls of the pipe is forced inward 
where the pressure is less. A secondary flow then takes place perpendicular to the main 
flow. The resulting double spiral flow increases pressure loss and heat transfer rate 
significant 1 y . 

There are many examples of curved pipe flows in engineering applications and in 
nature. They can be found in piping systems, flow passages of turbomachinery, coils 
in heat exchangers and in blood flow. The first major theoretical advance on laminar 
flow in a curved pipe was made by Dean (1927, 1928), who showed that fully developed 
laminar flow in slightly curved pipes depends primarily on a single dimensionless 
parameter, now called the Dean number. Since then, numerous studies have been made 
on this topic theoretically, experimentally and computationally. Computational 
studies on fully developed laminar flows have been made by McConalogue & 
Srivastava (1968), Truesdell & Adler (1970), Akiyama & Cheng (1971), Austin & 
Seader (1973), Patanker, Pratap & Spalding (1974), Collins & Dennis (1975), Dennis 
& Ng (1982), Nandakumar & Masliyah (1982) and Soh & Berger (1987). Studies on 
curved pipe flow have been extensively surveyed by Berger, Talbot & Yao (1983), 
Nandakumar & Masliyah (1986) and Ito (1987). 

Another example of secondary flow, caused by the Coriolis force, occurs when 
viscous fluids flow through a straight pipe which is rotating about an axis perpendicular 
to the pipe axis. Such rotating passages are used in the cooling systems for rotor blades 
of gas turbines as well as other flow passages in rotating machinery. The patterns of 
this secondary flow are similar to those observed in secondary flow through a 
stationary curved pipe. 
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Theoretical studies on laminar flows in orthogonally rotating pipes have been made 
by Barua (1954), Benton & Boyer (1966), Mori & Nakdyama (1968) and Ito & Nanbu 
(1971). Ito & Nanbu (1971) also conducted experiments for a wide range of parameters 
and provided experimental formulae on the friction factor. Computational studies 
have been made on pipe flow by Skiadaressis & SpaIding (1977), Ito, Hasegawa & 
Yano (1986), Lei & Hsu (1990) and Ishigaki & Tamura (1990), and on square duct flow 
by Speziale (1982), Kheshgi & Scriven (1985) and Komiyama, Mikami & Okui (1986). 
Studies on rotating pipe flow up to 1980 are summarized in Morris (1981). 

It has sometimes been noted in previous studies that there is an analogy between flow 
through stationary curved pipes and flow through orthogonally rotating straight pipes, 
in the sense that the longitudinal curvature plays a role similar to that of orthogonal 
rotation. This analogy has, however, been described in purely qualitative terms. 
Thangam & Hur (1990), for example, mentioned this analogy in the appendix of their 
paper on secondary flow in curved rectangular ducts. They noted that the Rossby 
number in rotating duct flow corresponds with the curvature ratio in curved duct flow. 
But they gave neither a dimensionless number that corresponds with the Dean number 
(a fundamental parameter in curved duct flow) nor any quantitative results. We know 
of no studies on the quantitative similarities between these two flows. In this study we 
will show that there is a strong quantitative analogy between fully developed laminar 
flows in curved pipes and orthogonally rotating pipes. 

In order to discuss similarities or show an analogy between two different kinds of 
flow, it is essential to use proper similarity parameters (dimensionless numbers). It is 
well known that the dynamical similarity for steady laminar flow in curved pipes 
depends on two dimensionless parameters: the Dean number Kqc = Re/hi and the 
curvature ratio h = R/d (see Berger et al. 1983). In the above definitions d denotes the 
diameter of the pipe, R the mean radius of curvature of the pipe, and Re the flow 
Reynolds number w, d/v, where w, represents the mean velocity of flow through the 
pipe and v the fluid kinematic viscosity. This combination has an important property 
in that the flow characteristics become independent of h when the h is large enough, 
so they depend only on the Dean number. We call this property an ‘asymptotic 
invariance property ’ of the second parameter. 

For laminar flow in an orthogonally rotating pipe, various combinations of 
parameters have been used to correlate the flow characteristics. Barua (1954) used Re 
and the rotation number, which is the inverse of the Rossby number Ro = w,/Qd, 
where SZ is the angular velocity of rotation. Ito & Nanbu (1971) used Kl = ReR, and 
the rotational Reynolds number R, = Qd2/v ,  while Lei & Hsu (1990) used R, G and 
R i  where G denotes the Reynolds number based on the axial pressure gradient. 
Kheshgi & Scriven (1985) used R, and Ro while Speziale (1982) used Re and Ro. 
However, none of these sets correspond with KLc and h in curved pipe flow, so they 
do not have the ‘asymptotic invariance property’. In this paper we will introduce 
a new dimensionless parameter KLR = Re/Roi, which was first used by Ishigaki & 
Tamura (1990) to correlate their computational results. We will take KLR and the 
Rossby number Ro as a set corresponding to KLc and h in curved pipe flow. 

When h and Ro are large enough in their respective flows, KLc and KLR are the sole 
parameters that determine the dynamical behaviour of each flow. This study will 
demonstrate that, when h and Ro are large, the friction factors and heat transfer rates 
for these two flows coincide when KLc = KLR. It will also be shown that the variations 
of the flow properties, such as the maximum secondary velocity, with KLc or KLR are 
very similar. 

In the next section we will discuss similarity parameters and proper similarity 
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transformations for each flow, and then show that these sets of parameters actually 
have an asymptotic invariance property of A and Ro when they are large. This will 
be followed by discussions of the computational results concerning friction factors, 
heat transfer rates, flow patterns and flow properties in axial and cross-stream 
directions. 

2. Formulation and dimensionless parameters 
2.1. Flow in curved pipes 

Although similarity parameters have been firmly established for curved pipe flow, here 
we will clarify the similarity transformation, the velocity and the length scales of this 
flow. The toroidal coordinates ( r ,  0, q5) will be used as shown in figure 1. The velocities 
in the directions of ( r ,  8,q5) are denoted by (u, v, w). It is assumed that the flow is 
incompressible steady laminar and fully developed. Since u, v and w are independent 
of 4 in the fully developed region, the equations of continuity and motion are (e.g. 
Ward-Smith 1980) 
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where p is the pressure and p the density. The Laplacian operator is 

In the fully developed region, it follows that 

where C, is a constant. 
The velocity scale of the secondary flow, Usc, will be obtained by retaining the 

inertia and centrifugal terms in (2) or ( 3 )  as 

Us, = W ,  (d/R)i = wm/Ai. (6) 
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F I G m e  1. Configuration of curved pipe flow. 
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F I G m e  1. Configuration of curved pipe flow. 

The cross-sectional quantities u, v and p will be scaled by UsC, and the axial quantities 
w and C, by w,. The scaled variables are 

The dimensionless governing equations based on these variables are then given by 

(iicosO-6sinO) = 0, (8) 
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Here, KLc = Re/-; is the Dean number, which is equal to the ratio of the square root 
of the product of inertia and centrifugal forces to the viscous force. This is a 
fundamental parameter in curved pipe flow and plays the same role as the Reynolds 
number for laminar flow in a stationary straight pipe. It is actually the Reynolds 
number based on the velocity scale Us, and the lengthscale d in cross-section. The 
curvature ratio h = R / d  denotes the ratio of the inertia force to the centrifugal force. 
From the above equations we can see that the two parameters, KLc and A, characterize 
laminar flow in curved pipes. 
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FIGURE 2. Configuration of an orthogonally rotating pipe flow. 

If we bring h to infinity, the limiting forms of (8)-(11) do not include A, as shown 
in the following: 

Flow characteristics are then independent of A, and the flow system exhibits an 
asymptotic invariance property. As these 'loose coil' approximated equations of 
curved pipe flow are solved numerically in this study, the effects of h are not included 
in the computational results. The experimental data on the friction factor (It0 1959) 
and computational studies on the finite curvature effects (Austin & Sieder 1973; Soh 
& Berger 1987) show that the effects of h are practically negligible when h is larger than 
approximately 8. 

2.2. Flow in rotating pipes 
For flow in orthogonally rotating pipes, we will make formulations parallel to those for 
curved pipe flow and look for the dimensionless parameters that correspond to KLc 
and A. The cylindrical polar coordinates (Y, 19, z )  fixed to a rotating straight pipe will be 
used, as shown in figure 2. The pipe rotates about the y-axis at a constant angular 
velocity 52. For fully developed laminar flow of incompressible fluids, the equations of 
continuity and motion are 
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where p* is the reduced pressure given by 

As in the case of curved pipe flow, i3p*/az is constant, 

--- ape - c,. 
az 

By retaining the inertia and Coriolis terms in (17) or (18), the velocity scale of 
secondary flow in the rotating pipe is estimated to be 

Us, = ( Q w , ~ ) ~  = w,/Roi. (22) 

The following transformations which are parallel to (7) will be made : 

Scaled forms of (1 6)-( 19) are 

It can be seen from the above equations that the two dimensionless parameters 
corresponding to KLc and h are KLR = Re/Rok and the Rossby number Ro = w,/Od. 
KLR is a parameter that was introduced by Ishigaki & Tamura (1990). It is equal to the 
ratio of the square root of the product of inertia and Coriolis forces to the viscous 
force. This is the Reynolds number based on UsR. The Rossby number is the ratio of 
the inertia force to the Coriolis force. If we replace the Coriolis force in KLR and Ro 
with a centrifugal force, we get KLc and A. 

If we bring Ro to infinity, terms including Ro disappear in (27). The limiting forms 
of (24b(27) then do not include Ro and the flow properties of rotating pipe flow are 
governed only by KLR. The limiting equations for a ‘weakly rotating’ pipe flow are 
similar to those for a ‘weakly curved’ or ‘loosely coiled’ pipe flow, as shown in 
(12)-(15), except for body force terms. 

The centrifugal force in curved pipe flow is proportional to w2/R ,  while the Coriolis 
force in rotating pipe flow is proportional to Qw. As these two forces can never be 
equal everywhere in the cross-section, the analogy described in this paper is not exact 
but of an approximate nature. The degree of coincidence varies from one flow property 
to another. We will see that integral properties, such as friction factor and heat transfer 
rate, show good agreement. Some discrepancy can be seen for local properties like 
maximum values of primary and secondary velocities. 

It is of some use to comment here that KL(tr), values of KLc or KLR where transition 
to turbulence occurs, does not satisfy the ‘asymptotic invariance property’. As KL(tr) 
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should asymptote to Re = 2320, the critical value for non-rotating straight pipe flow, 
when h or Ro are very large, we have 

KLC+2320/hg or KL,+2320/Roi as h or Ro+oo. 
These asymptotic values inevitably include the parameters h and Ro. Comparison of 
experimental data for KL(tr) (the lower critical value obtained by imposing highly 
disturbed conditions at the entry of a pipe), taken from Ito (1959) for curved pipe flow 
and from Ito & Nanbu (1971) for rotating pipe flow, shows considerable discrepancy 
between them. Therefore the analogy described here cannot be applied to transition to 
turbulence. 

For rotating pipe flow, we will solve (16)-(19) which include the effects of Ro. In 
order to know how well the ‘asymptotic invariance property’ of the second parameter, 
Ro, is satisfied for each flow property even when Ro is large, we will give two 
computational results, one for Ro = 10 and the other for Ro = 100. A single curve will 
be used in the figures when the two results coincide. 

3. Outline of the numerical calculation method 
The sets of equations (12E(15) in dimensional form and (16)-(19) are solved 

individually under steady conditions. The numerical scheme employed to solve these 
equations is based on the finite-volume approach, which is an adaptation of that of 
Patankar (1980). The main features of this method include a staggered mesh system, 
a power-law formulation for the combined convection-diffusion influence, an 
equation-solving scheme that consists of a block-correction method coupled with a 
line-by-line procedure, and a well-known SIMPLE procedure for velocity-pressure 
linkage. 

The computational grid covers only a semicircular sector because the flow must be 
symmetric with respect to the x-axis. The grid density employed is 32 in the r-direction 
and 27 in the @-direction. The grid spacing is nearly uniform in the &direction. In the 
r-direction the grid lines are more closely spaced near the wall than near the centre. The 
accuracy of the 32 x 27 grid computation was confirmed by repeating calculations with 
finer and coarser grids. The convergence criterion was specified with all the normalized 
residual errors for u, u, w and mass to be less than 

The boundary conditions for the velocities u, v and w are no-slip conditions on the 
walls of the pipe: 

u = v = w = O  at r = d / 2 .  
The boundary conditions for the plane of symmetry are 

au aw _ _ _ -  - - 0  and v = O  at @=O,n. ao C?B 

In this formulation pressure specifications on the boundaries are not required. At the 
centre of the pipe, treatments similar to those of Soh & Berger (1984) and Humphrey, 
Iacovides & Launder (1985) were used to avoid having too many coincidental nodes, 
each corresponding to a different circumferential angle, at r = 0. 

4. Results and discussion 
4.1. Friction factor 

Parameters KLc and KLR are the Reynolds number of each flow based on cross- 
sectional scales. The calculations compare solutions of the two problems when KLc = 
KLB. Figure 3 shows the computational results for the friction factors of these two 
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FIGURE 3. Friction factor ratio uo: value of a non-rotating straight pipe). Present computations: 
-, curved pipe flow; ----, rotating pipe flow. Experimental data: 0, Ito (curved flow); a, Ito 
& Nanbu (rotating pipe flow). 

FIGURE 4. Nusselt number ratio for a Prandtl number of 0.71 (Nu,: value of a non-rotating straight 
pipe). Present computations: -, curved pipe flow; ----, rotating pipe flow. 0, Experimental data 
by Mon et al. for curved pipe flow. 

flows, together with experimental data from Ito (1959) for curved pipe flow, and from 
Ito & Nanbu (1971) for rotating pipe flow. This figure shows that the experimental data 
coincide. Computational results of the two flows also coincide and agree with the 
experimental data. As computational results for Ro = 100 and 10 coincide, a single 
curve is shown for rotating pipe flow. 

From the above analysis, it is found that the friction factors of these flows can in 
practice be expressed by a single formula 

- f = &0.0899 + 1 . 1  lK;0.701), 
f ,  
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FIGURE 5. Contours of axial velocity and secondary stream functions 
(upper half: curved pipe flow, lower half: rotating pipe flow). 

for 15 < KL < 3000, and A, Ro > 8. Here f ,  = @/Re  is the friction factor for non- 
rotating straight pipe flow while KL represents KLc for curved pipe flow, and KLR for 
an orthogonally rotating pipe flow. 

4.2. Heat transfer rate 
Although the heat transfer problem is excluded from the present argument on 
similarity, we can assume, nevertheless, that this analogy is valid for it too. We will 
therefore give an example of the heat transfer rate. Figure 4 shows the mean Nusselt 
number ratio with a Prandtl number of 0.71, which includes computational results for 
curved pipe flow and rotating pipe flow as well as experimental data by Mori & 
Nakayama (1967) for curved pipe flow. The thermal boundary condition is an axially 
constant heat flux at the wall with a peripherally uniform wall temperature. The results 
for these two flows coincide. 

4.3. Flow patterns 
For the same three values of KLc and KLR, figure 5 shows computational contours for 
non-dimensional axial velocity and a secondary streamline. The upper half of the pipe 
cross-section shows curved pipe flow while the lower half shows rotating pipe flow. For 
all three values of KL, the contours of the two flows are very similar, particularly for 
secondary streamlines. 

4.4. Other flow properties 
When h and Ro are large enough, the location of the maximum axial velocity w,,, 
shifts on the x-axis from the centre of the pipe to the pressure side, as KI, increases. 
Figure 6 shows a variation of w,,,/w, with KL. For a moderate KL the two values are 
the same, but they differ when KL x 150. The asymptotic values are somewhat 
different, but the overall behaviour is similar. When comparing the calculations for 
Ro = 10 and 100 in rotating pipe flow, the maximum axial velocity seems to be some- 
what influenced by Ro, even if Ro is greater than 10. 

If we take the wall values at B = 180" as a reference pressure, the contours of the 
cross-sectional pressure for each flow, p andp*, are lines roughly parallel to the y-axis. 
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FIGURE 6. Variation of the maximum axial velocity with K,: --, curved pipe flow; 
-___ , rotating pipe flow (Ro = 100); -.-, rotating pipe flow (Ro = 10). 
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FIGURE 7. Variation of the maximum cross-sectional pressure difference with K,: -, curved 
pipe flow; ----, rotating pipe flow (Ro = 100); -.-, rotating pipe flow (Ro = 10). 

The maximum pressure difference, pmaZ or p:,,, is the wall pressure difference between 
0 = 0" and 180". These are normalized using (7)  and (23). Variations of p",,, and p"&, 
with KL are shown in figure 7 .  These are essentially different, since p* is the reduced 
pressure defined by (20). In spite of this, the variations of p",,, and pkax with KL are 
quite similar. 

The secondary stream function maximum $maz is located at the centre of secondary 
flow vortices as shown in figure 5. Variations of +,,,, normalized using (7) and (23), 
with KL are shown in figure 8. The secondary flow velocity Vs = (u2 + v'); reaches its 
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FIGURE 8. Variation of the stream function maximum $,,,,, with K,: __ , curved pipe flow; 
____ , rotating pipe flow (Ro = 100); -.-, rotating pipe flow (Ro = 10). 
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FIGURE 9. Variation of the maximum secondary velocity with K,: ~ , curved pipe flow; 
____ , rotating pipe flow (Ro = 100); ---, rotating pipe flow (Ro = 10). 

maximum near the wall around 0 = 90". A variation of the normalized maximum value 
V',,, with KL is shown in figure 9. These two figures also show similar quantitative 
behaviour in secondary flow properties. 

The quantitative correspondence to these local properties between the two flows are 
not as good as those of integral properties like friction factor and heat transfer rate. 
The discrepancy of local properties comes from the local difference between the 
centrifugal force and the Coriolis force. Nevertheless, variations of local properties 
with KLc or KLR are quite similar and the relative differences are within 16 %, except 
for figure 7. 
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5. Conclusions 
A quantitative analogy between fully developed laminar flows in curved pipes and 

in orthogonally rotating pipes has been demonstrated using similarity arguments and 
computational studies. The new dimensionless parameter KLR was introduced for 
rotating pipe flow where a set of and the Rossby number Ro were found to 
correspond with a set of the Dean number KLc and the curvature ratio h in curved pipe 
flow. When h and Ro were large enough, KLc and KLR became the sole governing 
parameters in their respective flows, so the analogy between the two flows became 
evident. Through experimental data and computational results it was demonstrated 
that the friction factor, and heat transfer rate, of the two flows coincided. Primary and 
the secondary cross-sectional flow patterns were proven to be similar for a wide range 
of parameters. Flow variables, such as the maximum axial velocity and secondary 
velocity of the two flows, exhibited similar behaivour when they were normalized 
according to the proper scaling method. 

This analysis does not carry over to turbulent flows. An analysis on turbulent flows 
will be made separately. 
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